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5. Functions of a Random Variable

Let X be ar.v defined on the model (@,F,P), and suppose
g(x) is a function of the variable x. Define

Y =g(X). (5-1)

Is Y necessarily a r.v? If so what is its PDF F, (y), pdf f,(y)?

(5-2) >
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Functions of Random Variables (1/2)

« Given a random variable X, other random variables can
be generated by applying various transformations on X

— Linear Y:g(X)=a>§+b

/
Daily temperature Daily temperature
in degree Fahrenheit in degree Celsius

— Nonlinear vy — g(X) = log X

 py (y)

Sample Space

>

one-to-one one-to-one
or many to one or many to one

v



Functions of Random Variables (2/2)

« Thatis, if Y is an function of X (Y =g(X)),then Y is
also a random variable

— If X is discrete with PMF Py (x) ,then Y is also discrete
and its PMF can be calculated using

x (x)

Py y) = oty

Probability-Berlin Chen 4



In particular
R (y) = P(Y (&) < y) = P(g(X (&) < y)=P(X (&) < g (0, y]). (5-3)

Thus the distribution function as well of the density
function of Y can be determined in terms of that of X.
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Functions of Random Variables: An Example

pe(y)= = px(x)
ix|g(x)=y
Example 2.1. Let Y = | X| and let us apply the preceding formula for the PMFE
py to the case where

px(z) = { 1/9 if = is an integer in the range [—4, 4],

0 otherwise.
The possible values of ¥V are y = 0.1.2.3,4. To compute py (y) for some given
value y from this range, we must add px (x) over all values o= such that |z| = y. In
particular. there is only one value of X that corresponds to y = 0, namely = = 0.
Thus,
P |
Py (0) = px (0) = 9
Also, there are two values of X that correspond to each y = 1, 2, 3, 4, so for example,
; - y 2
py(l) =px(—1) +px (1) = 9

Thus, the PMEFE of ¥V is

2/9 if y =1.2.3.4,
pyv(y) =4 1/9 ify =0,

0 otherwise.




LOTUS: Law of the unconscious statistician

Special case: Calculate Expectation of g(X)
Theorem: Suppose that g(X) is a function of a
random variable X, & the probability mass function of
X is p,(x). Then the expected value of g(X) is

E[9(X)]=29(x)p, (X)



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x)
-2 0.1
-1 0.2
1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y py)
-2 0.1
-1 0.2
1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y  py)
2 01 1 05 |
1 0.2

1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) Yy  py)
-2 0.1 1 05
1 02 4 05 |
1 03

12 04




Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y p(y) yp(y)
-2 0.1 1 05 0.5
-1 0.2 4 05 2.0
1 0.3

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y p(y) yp(y)
2 0.1 1 05 0.5
-1 0.2 4 05 2.0
1 0.3 E(Y)= 25

2 0.4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) y
2 0.1 4
-1 0.2 1
1 0.3 1
2 0.4 4



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) Yy  ybB(X)
2 01 4 0.4
1 0.2 1 0.2
1 0.3 1 0.3
2 0.4 4 1.6



Example: Suppose Y = X? & the distribution of X is as
given below. Determine the mean of g(X) by using

1. the definition of expected value, &

2. the previous theorem.

X p(x) Yy  ybB(X)
2 01 4 0.4
1 0.2 1 0.2
1 0.3 1 0.3
2 0.4 4 1.6



Expectations for Functions of Random Variables

e Let X be arandom variable with PMF Px, and let Q(X)
be a function of X . Then, the expected value of the

random variable g(X ) is given by

Xg X7

OO

\_Y_J
\
O
y

O

555 63
EloCl-3a0pc () [ |

« To verify the above rule

— Let Y = Q(X) , and therefore Pv (y)= {X|g(zx):py (x)

,,,,,,,,,,,,,



An Example

Example 2.3: For the random variable X with PMF
1/9, if xis an integer in the range[-4, 4],
Px (X): :
0, otherwise

Discrete Uniform Random Variable
1 4
E[X]: > XPx (x):— > x=0
X 9 X=—4

var(x) = E[(x ~E[XJPJ= £ (- E[x P px ()= & 352 =22

X S VY 9
or,let Z = (X —E[X ]f = X2
(219, if z=14,916
= p,(z)=41/9, ifz=0
0, otherwise

var(x)ze[z]zgzpz(z):%



General case:
Now, we would like to find the distribution of Y=g(X)

Method 1

19



Example 5.1: Y =aX +b (5-4)
Solution: Suppose a > 0.

R () =PlY () < y)=PlaX(§) +b<y)= P(X(é) syT‘bj =F, (VT‘bj -~ (5-5)
and
Lo)=1t, (y bj (5-6)

d

On the other hand If a <0, then
R (y)=P(Y(£) < y)=P@X(&)+b<y)= p(x@ >yT—bj

=1-F (yabj (5-7)
and hence

1, (y-b
w=-36 (%3] (5-8)
20
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From (5-6) and (5-8), we obtain (for all a)

y—Db
1:(y)_|a| ( a j (5-9)
Example 5.2: Y = X°?. (5-10)
R (y) =P (&) <y)=P(X2(&) <y). (5-11)

If y <0, thentheevent {x?)<y}=4, and hence
F(y)=0, y<O. (5-12)

For y >0, from Fig. 5.1, the event {Y (&) <y}={X?*() <y}
IS equivalent to {x, < X (&) < x,}-
AY :XZ

21
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Hence

R (y) = P04 < X (&) < %,) = Fy (%) = Fx (%)

=F(JY)-F(=/y), y>0. (5-13)

By direct differentiation, we get

1=Y(y)_< \/7(1: (\/7)+f ( \/7)) y>0’

0, otherwise.

(5-14)

If () represents an even function, then (5-14) reduces to

== ty)um (5-15)
In particular If X~ N (0,1), so that
o (X) = J;ﬂe (5-16)

22
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and substituting this into (5-14) or (5-15), we obtain the
p.d.f of Yy = X? to be (5-17)

e Y"2U ().

1
f, (y) = Ty
On comparing this with (3-36), we notice that (5-17)
represents a Chi-square r.v with n = 1, since r@/2)=r.
Thus, if X is a Gaussian r.v with =0, then y = x?

represents a Chi-square r.v with one degree of freedom
(n=1).

https://www.statlect.com/probability-distributions/chi-square-distribution

23
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Method 2

24



Note: As a general approach, given v = g(Xx), first sketch
the graph y = g(x), and determine the range space of y.
Suppose a < y < b is the range space of y = g(x).

Then clearly for y<a, K (y)=0, and for y>b, F,(y)=1 S0
that F (y) can be nonzero only in a<y<hb. Next, determine
whether there are discontinuities in the range space of y. If
so evaluate P(Y(¢)=y,) atthese discontinuities. In the
continuous region of y, use the basic approach

F (y)=P(g(X(&)<y)

and determine appropriate events in terms of the r.v X for
every y. Finally, we must have F,(y) for —o<y<+wo, and

obtain

_ dR, (y)

fy (y) dy

In a<y<hb.
25
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However, If Y =g(X) IS a continuous function, it Is easy to
establish a direct procedure to obtain f,(y). A continuos
function g(x) with g'(x) nonzero at all but a finite number
of points, has only a finite number of maxima and minima,
and it eventually becomes monotonic as | x |- «. Consider a
specific y on the y-axis, and a positive increment Ay as
shown in Fig. 5.4

/ X{X;S‘ A% T \ )fl(3 >3 +AX;

X, + AX, X,
Fig. 5.4

f,(y) for vy =g(x), where g(-) is of continuous type.
PILLAI




Using (3-28) we can write

Ply<Y(&)<y+Ay)= Lym f, (u)du = f, (y)-Ay.  (5-26)

But the event {y <Y (&) <y+Ay} can be expressed in terms
of x(¢) as well. To see this, referring back to Fig. 5.4, we
notice that the equation y=g(x) has three solutions X;,X;,X;
(for the specific y chosen there). As a result

when {y <Y (&) <y + Ay}, the r.v X could be in any one of the
three mutually exclusive intervals

{X, < X(&) X +AX}, {X, +AX, < X(&) <%} or {X, < X(&) <X, +AX,}.

Hence the probability of the event in (5-26) Is the sum of
the probability of the above three events, I.e.,
Ply <Y (&) <y +Ayj=P{x < X(&) < X +Ax}

+ P{X, + AX, < X (&) < X3+ P{X, < X (&) < X, + Ax;}.(5-27) 5,
PILLAI



For small Ay, Ax;, making use of the approximation in (5-26),
we get

f(NAY = ()AX + T, (G (M%) + f, ()Ax,.  (5-28)

In this case, Ax, >0, Ax, <0 and Ax, >0, so that (5-28) can be
rewritten as

_ [A% ] _ 1
fY(y)—ifo(Xi) Ay _Z‘Ay/AXi‘fX(Xi) (5-29)

and as Ay — 0, (5-29) can be expressed as
1

1
fy (y) = Z‘dy/dx‘xi fy (%)= iz‘g,(xi)‘ fy (%). (5-30)
The summation index I In (5-30) depends on y, and for every
y the equation y = g(x) must be solved to obtain the total
number of solutions at every y, and the actual solutions x,, x,,---

all in terms of y. 28
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Examples



For example, if Y =x?, then forall Y>0, X, ==JY and %, =+Jy
represent the two solutions for each y. Notice that the
solutions X are all in terms of y so that the right side of (5-30)
is only a function of y. Referring back to the example Y =X
(Example 5.2) here for each ¥>0. there are two solutions
given by x =-Jy and % =+/y. ( f(y)=0 for ¥<0 ).
Moreover

ﬂ =2X So that
dx

and using (5-30) we get
f(f W)+ i (V).

0, otherwise,

dy

dx

=2y

X:Xi

fY (y) = 1 (5-31)

which agrees with (5-14). -

PILLAI



Example 5.5: Y:%. Find f(y). (5-32)

Solution: Here for every y, x, =1/y Is the only solution, and

ﬂ:_iz sothat |¥Y| = 12:y2,
dx X dx|,_, 1/y
and substituting this into (5-30), we obtain
1 1 ]
fy (y) = 7 fy (;j (5-33)

In particular, suppose X is a Cauchy r.v as in (3-39) with
parameter ¢ so that

f, (X)= 2‘/”2, — 00 < X < +00, (5-34)
a + X
In that case from (5-33), Y =1/ X has the p.d.f
1 alrx - @Ala)lx C - _
N =y T @ay sy Y G

PILLAI



But (5-35) represents the p.d.f of a Cauchy r.v with
parameter 1/q. Thusif X ~C(«), then 1/ X~ C(1/a).

Example 5.6: Suppose f, (x) =2x/z* 0<x<z, and Y =sin X.
Determine f,(y).

Solution: Since X has zero probability of falling outside the
Interval (0,7), y=sinx has zero probability of falling outside
the interval (0,1). Clearly f,(y)=0 outside this interval. For
any 0< y <1, from Fig.5.6(b), the equation y =sinx has an
infinite number of solutions ---, x,, X,, X,,---, where x, =sin™"y
IS the principal solution. Moreover, using the symmetry we
also get x, =7 —x, etc. Further,

% = COSX = +1—sin? X = 1/1— y?

X

so that dy

dx

2

= 1—y . 32
X=X; PILLAI




t ()

Fig. 5.6

Using this in (5-30), we obtain for 0 <y <1,

=1
fY (Y) — !_Zaoo ﬂ fx (Xi)' (5-36)
But from Fig. 5.6(a), in this case f,(x,)=f,(x)= f,(x,)=---=0

(Except for f,(x,) and f, (x,)the rest are all zeros).

33
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Thus (Fig. 5.7)

2X,

£, (y) = £ (0)+ (%, [ 2
oy (0 )=
_ 204 7~ xl)_ \/127 O<y<]
e\1—y? " O’y

Example 5.7: Let Y
Determine f,(y).

2X,
_|_
=3

otherwise.

2

T1,(y)

(5-37) —=

1
Fig. 5.7

=tan X where Xx~U(-x/2,7/2).

Solution: As x moves from (-z/2, z/2), y moves from (—oo, + ).

From Fig.5.8(b), the function y —

tan X IS one-to-one

for -z/2<x<z/2. Foranyy, x =tan'y IS the principal

solution. Further

dy dtanx
dx dx

https://www.desmos.com/calculator

=sec’x=1+tan*x=1+Yy”’

34
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so that using (5-30)

1 1/ 7
f = f (X)) = ,
v (y) |dy /dx |X:X1 x (%) 1+ y2

— 00 < Y < 400, (5-38)

which represents a Cauchy density function with parameter
equal to unity (Fig. 5.9).

A fX (X)

» X A
—xl2 wl2 fy (y)=

2

1+y

Fig. 5.9

35
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Functions of a discrete-type r.v
Suppose X Is a discrete-type r.v with
P(X'=X)=p;, X=X,%X, X, (5'39)

and Y =g(X). Clearly Y is also of discrete-type, and
when x=x, vy, =g(x), and for those ,

P(Y =y)=P(X=X)=p, Y=Y Yo Vi (5-40)

Example 5.8: Suppose X ~P(1), So that

Kk
P(X =k)=¢e™ % k=012, (5-41)

Define Y = X? +1. Find the p.m.f of Y.
Solution: X takes the values 0,1,2,---,k,--- sothatY only

takes the value1,2.5,..- k2 +1,--- and .
PILLAI



P(Y =k2+1) = P(X =K)

so that for j=k*+1

. . A
PY = )=P(X =.j-1)=e" =125 k*+1---. (5-42)
(v =) =P(X=\i-1)=e i +

37
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Example 5.3: Let (X-c, X>c,

(X)
Y =9g(X)=< 0, —c< X <¢, ¢ Tg /=
X+c, X<-c 7 | °
In this case (a)
P(YY =0)=P(-c< X (&) <c)=F, (c)- F,(-c). (5-18)

For y>0, we have x>c, and Y (&) = X (&) —c so that
R (Y)=P(Y (&) <y)=P(X(&)-c<y)
=P(X(&)<y+c)=F,(y+c), y>0. (5-19)
Similarly y <0, if x<—c, and Y (&) = X (&) +c so that

F () =P (&) <y)=P(X(&)+c<y)

=P(X(&)<y-c)=F,(y—-c), y<O. (5-20)
Thus
(f.(y+c), y>0, £E (0 1R ()
fy (y) = [Fx (c) — Fy (—=¢)]o (Y_),/" -
f,(y—c), y<o. ) " © 4

Fig. 5.2



Example 5.4: Half-wave rectifier
X, X>0,

Y =g(X); 9(x)= {o, <0 (5-22) 'y
In this case
P(Y =0)= P(X(&)<0) = F, (0).  (5-23) s ;
and for y >0, since Y = X,
R (y)=P(Y (5) < y)=P(X(&) < y)=F(y). (5-24)

Thus

( fx(y)1 y>0’
fy (y) =1F(0)o(y) y=0, = f,(V)U(y)+F(0)o(y). (5-25)
0, y <0,

L
39
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