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Random Vectors and Matrices

A random vector is a vector whose elements are random variables.
Similarly a random matrix is a matrix whose elements are random variables.

Specifically, let X = {X|;} be an n X p random matrix.
Then the expected value of X, denoted by E (X), is the n X p matrix of numbers

(if they exist)

e The expected value of a random matrix

E(X11) E(X1) E(X1,)
E(X) = E(X21) E(X22) E(X2p)
| E(Xn1) E(X52) E(Xnp) |
where, for each element of the matrix,
* if X, is a continuous random variable with
I X, fij(xig) dx;; probability density function f;(x;;)
E(X,) = | C
%)= if X; is a discrete random variable with
L E‘ FiiPij (i) probability function p;;(x;;)

e E(X+Y)=EX)+EY)

e E(AXB) = AE(X)B



Example 2.11 (Computing expected values for discrete random variables)
Suppose p = 2 and n = 1, and consider the random vector X' = [X;, X5|. Let
the discrete random variable X; have the following probability function

X, | -1 0 1

Similarly, let the discrete random varibale X5 have the probability function

Xo | 0 1
p2(X2) | 0.8 0.2

Calculate E(X).

Then E(X,) = 2, x,p, (%) = (=1)(3) + (0)(3) + (1)(4) = .1.

allx,

Then E(X,) = 2, x,p,(x;) = (0)(.8) + (1)(2) = 2.

altx,

Thus,
~ E(X]):] ~ [1}
X = [E(Xz) 2
Mean Vectors and Covariance Matrices
Suppose X = [X1, X5,...,X,]isapx1random vectors. Then each element

of X is a random variables with its own marginal probability distribution.

e The marginal mean u; = E(X;),2=1,2,...,p.

e The marginal variance 02 = E(X; — ;)i =1,2,....p.



Specifically,

([~ gy, T Xiisa continuous random variable with probability
J’ i fi(x)dx, density function f(x;)

My = \ N
S x,pi(x) if X, is a discrete random variable with probability
| iPii function p,(x;)
([ (x — w ) f(x)dx if X, is a continuous random variable
J . Y™ BTSN ith probability density function f(x,)
o = 4
2 (x. — m)?p,(x)) if X, is a discrete random variable
L i} Pits with probability function p;(x;) (2-25)

LY

It will be convenient in later sections to denote the marginal variances by oy, rather
than the more traditional o7, and consequently, we shall adopt this notation.

e The behavior of any pair of random variables, such as X; and X, is described
by their joint probability function, and a measure of the linear association
between them is provided by the covariance

oir = E(X; — pi) (X — i)

T E(Xi - wi) (X, — fey )

(" (7 Nt if X, X, are continuous
J‘_m Lﬁ (= ) (v = ) (6 X A% % o dom variables with

the joint density
{ function f, (x;, x;)
- _ _ Uy if X, X, are discrete
Ec‘f a%:,‘ (i = w) (i = i) Puc (o %) random variable with
joint probability
t function p;, (x;, x;)

(2-26)

and u; and u,, i,k = 1,2,..., p, are the marginal means. When i = k, the covari-
ance becomes the marginal variance.



The means and covariances of the p X 1 random vector X can be set out
as matrices. The expected value of each element is contained in the vector of
means g = E(X), and the p variances a;; and the p(p — 1)/2 distinct covariances
o, (i < k) are contained in the symmetric variance-covariance matrix X =
EX - p)(X— p). Specifically,

E(Xn_) 123
Exy = | D | = | Rl = (2:30)
E(X,) Ky
and
s = EX-p)X-n)
X, — M
el TR | X e X ]
Xp ~ Hp
X, = m) X, = w) (X = pg) (X = ) (X~ #y)
_ (X, — #2)'()(1 - ) (X, _ P'vz)z (X, — #2)‘(Xp - pr)
(Xp - au‘p)(X] - ) (Xp - F'p)(Xz - .P-z) (Xp - ""’p)z
E(X, = m) EX, — w) (X, = ) - E(XG = ) (X, — )
_ E(X, - Mz?(x1 — W) E(X, - #)? E(X, - Nz?(Xp - Kp)
E(Xp - lu‘p)(Xl - .Iu’l) E(Xp - |u’p)(X2 - |u’2) ‘“ E(Xp - Iu'p)z
or
Oy 013 7" Oy
3 = Cov(X) = | 72 720 7w (2-31)
LOp1 Op2 Opp _




e Statistical independent X; and X, if
P(X; <x;and Xy <) = P(X; < a3) P(Xy < )

or

fir(zi,xp) = fi(z;) fr(zr).

e Mutually statistically independent of the p continuous random
variables X, X5, ..., X, if

fro. p(@1,m2,. .0 2p) = fi(x) fa(w2) - - fo(zp)

for all p-tuples (x;, Xz, .- , X))

e linear independent of X;, X, if

Cov(X;, X)) =0



Example 2.12 (Computing the covariance matrix) Find the covariance
matrix for the two random variables X; andX, introduced in Example 2.11
when their joint probability function pio(21, 22) is represented by the entries in
the body of the following table:

X9
X 0 1 pi(xp)
-1 24 06 3
0 16 14 3
1 40 00 4
py(x3) 8 2 1

We have already shown that p, = E(X,) = .1and p, = E(X;) = .2. (See
Example 2.12.) In addition,

o, = E(X, - .""1)2 = 2 (X - 'l)zp] (%)

allx,

= (=1 = .1)2(3) + (0 = .1D)*3) + (1 — .1)*(4) = .69

oy, = E(X; — Hz)z = 2 (x; = -2}2P2(x2)

allx,
= (0 = 2)%(.8) + (1 — 2)*(.2)
= .16

o, = E(X; — ) (X, — By) = E (x; = 1) (x; = 2)p1a{xy, x3)

all pairs(x,,x;)
=(-1-.1)(0 - 2)(24) + (-1 = .1)(1 — .2)(.06)
+ o4 (1= 1)1 - 2)(00) = —.08
oy = E(X, — ) (Xy — ) = E(X; — u)(X, — pp) = 0, = —.08



Consequently, with X' = [ X, X;],

. E(X1) Mg _ 1
”=ﬂm’[m&J'[m}’EJ

2=EX - p)X - p)

and

_ [ - wy (X, = ) (X, - Mz):|
(Xy — w)(X) — ) (X, — #2)2
_ —E(XI - 1) E(X, — u) (X, - .\U-z):|
LE(X, — p)(Xy — ) E(X; — )
. _0'11 U'lzj _ [ .69 _.08}
Loy o, ] | -08 16 -

We note that the computation of means, variances, and covariances for dis-
crete random variables involves summation (as in Examples 2.12 and 2.13), while
analogous computations for continuous random variables involve integration.

Because o, = E(X, — u;)(X, — pn,) = oy, it is convenient to write the
matrix appearing in (2-31) as

Tip Oy "7 Oy
=EX-p)(X-p)y=|72 %27 % (2-32)
Tip G2p 77" Tpp

We shall refer to u and X as the population mean (vector) and population vari-
ance—covariance (matrix), respectively.



e Population correlation coefficient p;;

Pik =

ik

v Tiin/ Tkl

The correlation coefficient measures the amount of linear association between
the random variable X; and X}..

Detail:

It is frequently informative to separate the information contained in vari-
ances o; from that contained in measures of association and, in particular, the
measure of association known as the population correlation coefficient p;,. The
correlation coefficient p,, is defined in terms of the covariance o,, and variances

o;; and o, as

Pix = 7

Tik

VO VO

(2-33)

The correlation coefficient measures the amount of linear association between the

random variables X, and X,. (See, for example, [2].)

The population correlation matrix p

Let the population correlation matrix be the p X p symmetric matrix

Oy Y Tip
Vﬂn\/an Vﬂ'u\/ﬂ_fzz \"{T]]\/a-pp
O G2 . %%
\fﬂ'n Vo, Vo '\/E'zz VO VOpp
| Vo, Vay, Vo, Vo, VOpp VUpp |
L pya Py
P2 1 ' P'::p
I—plp pzp te 1 el

(2-34)



and let the p X p standard deviation matrix be

Vg, 0 - 0
v | V"fég 0 (2-35)
0 0 - Vo,
Then it is easily verified (see Exercise 2.23) that
V/7Z2pV'i2 =3 (2-36)
and ‘ |
Cp=(WATEVAT e

That is, ¥ can be obtained from V2 and p, whereas p can be obtained from X. '
Moreover, the expression of these relationships in terms of matrix operations
allows the calculations to be conveniently implemented on a computer. ;

Example 2.14 (Computing the correlation matrix from the covariance
matrix) Suppose

4 1 2 oy Oy Oy
E"T‘ 1 9 _3 = T2 T33 Oy
2 _3 25 05 023 0-33
Obtain V'/? and p
Here
Vo, 0 0 2 00
ViZ=| 0 Vo, 0 [=[030
0 0 Vo, 005



and

(VUZ)—lz (V],’Z)—l

e et

e Define

(v],’Z)—l = [

Consequently, from (2-37), the correlation matrix g is given by

o O M=

A

L Ll =Y

E(X —p)(X —p)

|

X1
o1

Y12
Y29

|

0 0
Lo
0}
1 1
6 3
-l
_%1

and then p=EX =

4

o O e

O W D
wmpe— O O

1
2
-3 0
0

2

K1
Hq

Hg+1

Hp

=

c [

o o

Ly |—




e It is sometimes convenient to use COV(X(I): X(z)) note where
Cov( XV, X)) =%, =%,

is a matrix containing all of the covariance between a component of xW
and a component of x®

The Mean Vector and Covariance Matrix for Linear
Combinations of Random Variables

e The linear combination ¢'X = ¢1 X7 + -+ + ¢, X, has
mean = E(c'X) =c'p

variance = Var(c'X) = c'Zc
where p = E(X) and X = Cov(X).

e Let C be a matrix, then the linear combinations of Z = CX have
pz = E(Z) = E(CX) = Cpx

¥z = Cov(Z) = Cov(CX) = CxxC’



e Sample Mean

e Sample Covariance Matrix

S11 - Slp
Sn = : :
| S1p " Spp
1 ™
=2 (T —T)
j=1
T
% Zl(ﬁ?jl T1)(zjp — Tp)
L =

oy Tp)
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6.1 VECTOR RANDOM VARIABLES

The notion of a random variable is easily generalized to the case where several quanti-
ties are of interest. A vector random variable X is a function that assigns a vector of
real numbers to each outcome { in §, the sample space of the random experiment. We
use uppercase boldface notation for vector random variables. By convention X is a col-
umn vector (n rows by 1 column). so the vector random variable with components
Xi. X5, ..., X, corresponds to

X

X
X=|"7|=[x.%....X]"

X
where “T" denotes the transpose of a matrix or vector. We will sometimes write
X = (Xj. X5..... X,) to save space and omit the transpose unless dealing with matri-

ces. Possible values of the vector random variable are denoted by x = (xy, x3,..., x,)
where x; corresponds to the value of X,.
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6.3 EXPECTED VALUES OF VECTOR RANDOM VARIABLES

In this section we are interested in the characterization of a vector random variable
through the expected values of its components and of functions of its components. We
focus on the characterization of a vector random variable through its mean vector and
its covariance matrix. We then introduce the joint characteristic function for a vector
random variable.

The expected value of a function g(X) = g(X,,..., X,,) of a vector random vari-
able X = (X, X5,.... X)) is given by:

/ / glxg, o) (v, o, x,) dxy dx;...dx, Xjointly

E[Z] = continuous
> D g(xx L x)px(x. X, X)) X discrete.
N % (6.25)

An important example is g(X) equal to the sum of functions of X. The procedure
leading to Eq. (5.26) and a simple induction argument show that:

E[gi(X) + &0X) + -+ + gu(X)] = E[g1(X)] + -+ + E[ga(X)].  (6.26)

Another important example is g(X) equal to the product of n individual functions of
the components. If X;..... X, are independent random variables, then

E[gi(X1)g(X3) ... g.(X0)] = E[g1(X1) | E[g(X3)] ... E[ga(XW)].  (6.27)



6.3.1

Mean Vector and Covariance Matrix

The mean, variance, and covariance provide useful information about the distribu-
tion of a random variable and are easy to estimate, so we are frequently interested
in characterizing multiple random variables in terms of their first and second mo-
ments. We now introduce the mean vector and the covariance matrix. We then in-
vestigate the mean vector and the covariance matrix of a linear transformation of a
random vector.

For X = (X, X5,..., X,)., the mean vector is defined as the column vector of
expected values of the components X:

X E[X;]
my = E[X] = E ‘},(2 sl E [f{ﬂ (6.28a)
X, E[X,]

Note that we define the vector of expected values as a column vector. In previous sec-
tions we have sometimes written X as a row vector, but in this section and wherever we
deal with matrix transformations, we will represent X and its expected value as a col-
umn vector.

The correlation matrix has the second moments of X as its entries:

E[X]] E[Xlﬂzfz] o E[XX,]
Ry = | ERX] EXG] . EDGX] | (&25h)
The covariance matrix has the second-order central moments as its entries:
E[(X1_m1)2] E[(Xy=my)(Xo=-my)] ... E[(X; = m)(X, —m,)]
E[(Xy=my) (X —my)] E[(X,=my)’] o E[(Xy = mp)(X, = my) ]|
E[(Xn_m!!)[}(l_ml}] E[(Xn_"rn}{XZ_MZJ] E[{Xn - nrn}z]
(6.28c)

Both Rx and Kx are n X n symmetric matrices. The diagonal elements of Ky are
given by the variances VAR[ X, ] = E[(X; — m,)?] of the elements of X. If these ele-
ments are uncorrelated. then COV(X;, X;) = 0 for j # k. and Ky is a diagonal ma-
trix. If the random variables X, ..., X, are independent, then they are uncorrelated
and Ky is diagonal. Finally, if the vector of expected values is 0, thatis,m; = E[X;] =0
for all k, then Ry = Ky




Example 6.16

Let X = (X,. X3, X3) be the jointly Gaussian random vector from Example 6.6. Find E[X] and K.
We rewrite the joint pdf as follows:

E_[IE +x3 —Zﬁ; ;) E—rfﬂ

(™

Fxyxx (X1, X2, x3) =

f
2,1 —| — —

A V2

We see that X is a Gaussian random variable with zero mean and unit variance, and that it is in-
dependent of X and X,;. We also see that X and X are jointly Gaussian with zero mean and
unit variance, and with correlation coefficient
1 COV(X,. X5)
Prx,= ——==——"——=COV(X,, X;).

Va2 Tx,0x,

Therefore the vector of expected values is: my = 0, and

1
1 —— 0
V2
Kx = 1 .
—— 1 0
V2
0 0 1

We now develop compact expressions for Ry and Ky, If we multiply X,ann X 1
matrix, and X, a 1 X n matrix, we obtain the following n X n matrix:

X, X XX, ... XX,

X XX, X3 ... XX
XX"'=| 7 [x. X..... X, ]=| ! 2 2% |

X, XX XX .. X

If we define the expected value of a matrix to be the matrix of expected values of the
matrix elements, then we can write the correlation matrix as:

Ry = E[XX"]. (6.29a)
The covariance matrix is then:

Kx = E[(X — my)(X — my)"]
= E[XXT] = my E[X.T] - E[X.]IIJKT + Il]xl]le
= Ry — mymy. . (6.29b)



6.3.2

Linear Transformations of Random Vectors

Many engineering systems are linear in the sense that will be elaborated on in Chapter
10. Frequently these systems can be reduced to a linear transformation of a vector of
random variables where the “input” is X and the “output”™is Y:

iy aq» aua iy X|
@y dp ... d A

Y — 21 22 2n -_ — Ax
g Oy wee gy || X,

The expected value of the kth component of Y is the inner product (dot product) of the
kth row of A and X:

E[Yk] = E[léjlrdijji| = gﬂ'kIE[Xj].

Each component of E[Y] is obtained in this manner, so:

i“UE[XI]_
f:l ay, ap; ... a, || E[X;]
my = E[Y] = EHZIE[X*"] _|an an ... ay E[_Xz]
I R 0 . E[.X,!]
_E“nfE[‘Xj’]_
= AE[X] = Amy. (6.30a)

The covariance matrix of Y is then:

Ky = E[(Y — my)(Y — my)"] = E[(AX - Amy)(AX — Amy)']
= E[A(X - my)(X — my)"AT] = AE[(X — my)(X — my)T]A”

where we used the fact that the transpose of a matrix multiplication is the product of
the transposed matrices in reverse order: {A(X — my)}T = (X — my)TAL

The cross-covariance matrix of two random vectors X and Y is defined as:
Kxy = E[(X = my)(Y = my)"'] = E[XY'] = mym," = Ryy — mym,".
We are interested in the cross-covariance between X and Y = AX:
Kxy = E[X — my)(Y — my)"] = E[(X = mx)(X — my)"A"]
= KxA". (6.30c)



Example 6.17 Transformation of Uncorrelated Random Vector

Suppose that the components of X are uncorrelated and have unit variance, then Ky = L, the
identity matrix. The covariance matrix for ¥ = AX is

Ky = AK AT = AIAT = AAT (6.31)

In general Ky = AAT is not a diagonal matrix and so the components of Y are correlated. In
Section 6.6 we discuss how to find a matrix A so that Eqg. (6.31) holds for a given Ky. We can
then generate a random vector Y with any desired covariance matrix Ky.

Suppose that the components of X are correlated so Ky is not a diagonal matrix.
In many situations we are interested in finding a transformation matrix A so that
Y = AX has uncorrelated components. This requires finding A so that Ky = AKAT
is a diagonal matrix. In the last part of this section we show how to find such a ma-
trix A.

Example 6.18 Transformation to Uncorrelated Random Vector

Suppose the random vector X, X;, and X7 in Example 6.16 is transformed using the matrix:

Find the E[Y] and Ky.

Since my = 0, then E[Y] = Amy = 0. The covariance matrix of Y is:

1 ——= 0
Jro1 oo NG 1 1 0
Ky=AKA"=2/1 —1 off 1~ 1 -1 0
0 o 1| V3 0 0 1
0 0 1
1 1 1
-— 1+— 0 1-— 0 0
o V2 V2 V2
==/1 -1 0 1 1 = 1
2 1-— —[1+—=] o0 0 1+—= 0
0 0 1 V2 ( \e”i) V2
0 0 1 0 0 1

The linear transformation has produced a vector of random wvariables Y = (¥, ¥5, ¥3) with
components that are uncorrelated.



