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Definition 3.8  Gaussian Random Variable
X is a Gaussian (., o) random variable if the PDF of X is
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e~ (x—n) /20 ;

fx(x) =
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where the parameter pi can be any real number and the parameter o > 0.

Theorem 3.12  If X is a Gaussian (ju, o) random variable,

E[X]=p  Var[X]=0o2.
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Theorem 3.13  If X is Gaussian (., 0), Y = aX + b is Gaussian (ap + b, ao).

Definition 3.9  Standard Normal Random Variable
The standard normal random variable 7 is the Gaussian (0, 1) random variable.



Definition 3.10 Standard Normal CDF
The CDF of the standard normal random variable Z is

D(z) = —*/2 gy,
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Theorem 3.14  If X is a Gaussian (i, o) random variable, the CDF of X is

FX(x)=c1>(x“).
a

The probability that X is in the interval (a, b] is

P[a<ng]:q>(b_“')—q>(a_“).
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Figure 3.6 Symmetry properties of Gaussian(0,1) PDF.
Theorem 3.15

D(—z) =1 — B(2).

Example 3.15  Suppose your score on a test is x = 46, a sample value of the Gaussian (61, 10)
random variable. Express your test score as a sample value of the standard normal
random variable, Z.



Equation (3.54) indicates that z = (46 — 61)/10 = —1.5. Therefore your score is 1.5
standard deviations less than the expected value.

Example 3.16  If X is the Gaussian (61, 10) random variable, what is P[.X < 46]?

Applying Theorem 3.14, Theorem 3.15 and the result of Example 3.15, we have

P[X <46] = Fy (46) = ®(—1.5) =1 — ®(1.5) =1 —0.933 = 0.067. (3.55)
1
This suggests that if your test score is 1.5 standard deviations below the expected
value, you are in the lowest 6.7% of the population of test takers.
S
Example 3.17 If X is a Gaussian random variable with © = 61 and o = 10, whatis P[51 < X < 7117

Applying Equation (3.54), we find thatthe event {51 < X < 71]correspondsto{ l<Z< 1}.
The probability of this event is

O(1) — d(—1) = d(1) —L1 — ()] =2d(1) — 1 = 0.683. (3.56)
—_——— J\/ —

Definition 3.11 Standard Normal Complementary CDF
The standard normal complementary CDF is

O@z) = P[Z > z]= \/%Tr [’oeﬂzﬂ du=1— @(2).
2 (Y
erf(x) = ﬁfo e " du. (3.132)
It is related to the Gaussian CDF by
®(x) = l n 1erf(i) (3.133)
NG
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Definition 4.17

Bivariate Gaussian Random Variables

Random variables X and ¥ have a bivariate Gaussian PDF with parameters j1, o1, iz,
a2, and p if
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where ) and pa can be any real numbers, o1 > 0,00 > 0, and —1 < p < 1.

Figure 4.5 illustrates the bivariate Gaussian PDF for ity = 2 = 0, 061 = 02 = 1, and

three values of p. When p = 0, the joint PDF has the circular symmetry of a sombrero.
When p = 0.9, the joint PDF forms a ridge over the line x = y, and when p = —0.9 there

is a ridge over the line x = —y. The ridge becomes increasingly steep as p — =+1.
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Figure 4.5 The Jomt Gaussian PDF fy y(x, y) for u; = p2 = 0, 01 = 02 = 1, and three values
Ofp.

To examine mathematically the properties of the brvanate Gaussian PDE, we define

B ﬁ:ir]zﬁ:+p£ﬁr—#l} &2 = 02y/1 = p, (4.145)
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and manipulate the formula in Defimition 4.17 to obtamn the following E?SPIEE-SiDﬂ for the
joint Gaussian PDF:

o1 2a] - g~ r—fia(x) 285

Xy = —— : 4.146
fry(x.) e P (4.146)

Equation (4.146) expresses fx y(x, v) as the product of two Gaussian PDFs, one with
parameters ) and o) and the other with parameters j > and o;. This formula plays a key
role in the proof of the following theorem.

Theorem 4.28

If X and ¥ are the bivariate Gaussian randem variables in Definition 4.17, X is the Gaussian
(1, o) random variable and Y iz the Gaussian (1. o2) randem variable:
E—[.‘f—p.]_!',l"]d'l" fl' (y) = g_U_Fl]--‘f:df_
aiv 2m a2+ 2

Jrix)=

Proaf Integrating fy y(x, y) In Equation (4.146) over all y, we have

i ]
frw= [ frrendy (4.147)
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The mtegral above the bracket equals 1 because 1t 15 the mtegral of a Gaussian PDF. The remaimder

of the formula is the PDF of the Gaussian (., o) random vanable. The same reasoning with the
roles of X and ¥ reversed leads to the formmla for fy(y).



Method2:

+c0
) = / f(z,y)dz

Substituting

v= (T~ pu)fo: , dv=dz/o,
gives

400

0= [t (52 -z (252 o

Now substituting

wet=PY=—m)oy dv

VA - Vi-¢2
gives
AR 1 ¥ 1
= SR (R il ) R P8
1) /2"ayexp[ 2( oy ) 2w]dw
—00
and thus
1 1 3 Vi 1
- Y ¢ il LI
() 21wycxP|: 2( = )} /exp[ 2w]dw
Since
+o0 1
]exp [—sz] dw = V2r
-0
we obtain

;e RYCEAY
f(y)—\/z—myexp[ 2( = )]
Conditional distributions

Theorem 4.29 15 the result of driding fy y(x, ¥) m Equation (4.146) by fy(x) to obtain
Srix(ylx).



Theorem 4.29
If X and ¥ are the bivariate Gaussian random variables in Definition 4.17, the conditional

PDF of ¥ given X is
1 —(y—fy(x))" f2E2
e - =4

Jrix (ylx) = -
T/ 2

where, given X = x, the conditional expected value and variance of ¥ are
'32 =a;(l—p7).

= a2
falx) = pa + p—(x — 1),
]

Similarly for f(x|y):

f(zly) = )

Therefore

V2moy exp [—mipg) (( ;x
f(mly) = ; )
2moz0y4/1 — p? exp [—% (g-‘;;-l) ]

and thus
203(1—1—,;2)' [x = (P"a: +p%§ (y— #«y))ﬂ

f(zly) = IR e [—

This density function thus corresponds to a univariate normal distribution with

mean fi; + p<= (y — py) and variance o2(1 — p?).



The next theorem identifies p in Defimition 4.17 as the correlation coefficient of X and
Y.pxy-

Theorem 4.31 | Bivariate Gaussian random variables X and ¥ in Definition 4.17 have correlation coefficient

PXY = P

Definition 4.4  Cevariance
The covariance of two random variables X and ¥ is

Cov[X.¥] = E[(X — pux) (F — pr)].

Definition 4.8  Correlation Coefficient
The correlation coefficient of two random variables X and ¥ is

Cov[X,F]  Cov[X T]

Y Fr =
ar| ar| oxoy

Theorem 4.12  For random variables X and ¥, the expected value of W = g(X, F) is

Discrere:  E[W] = Z Z glx, ¥)Pry(x.y),

rely yedy

a0 a0
Continuous: E[W] = f f glx,¥ifxy (x,y) dx dy.
— o —0

Proof Subshtuting i, oy, p, and o for p y, oy, py, and oy in Definition 4.4 and Defimtion 4.8,
we have [ ]
EX = gy WY = p2)

PYY = : (4.149)

T a2




To evaluate this expected value, we use the substitution fy y(x. ) = fryx(y|x) fx(x) in the double
mtegral of Theorem 4.12. The result can be expressed as

1 a0 o
AX.T = f (x = puy) (f (v = p2) frix (vix) ﬂ’.‘-') S (x) dx (4.150)
T1a2 J—no —o
1 80
- f (x = 1) E [}'— )X = :l.'] fx(x) dx (4.151)

Because E[F|.XY = x] = fia(x) m Theorem 4.29, 1t follows that

E[¥ = palX = x] = jig{x) = g = pj—j{r -1 (4.152)

Therefore,
o [ -
ﬂ.t:r=—1f (x = p1) fy(x)dx = p, (4.153)
-I:l'l_ —3

because the mtegral in the final expression 13 Var[.X] = r.rf.

From Theorem 4.31, we observe that if X and T are uncomrelated. then p = 0 and, from
Theorems 4.29 and 430, frix(y|x) = fr(y) and fyyr(x|y) = fx(x). Thus we have the
following theorem.

Theorem 4.22  Bivariate Gaussian random variables X and T are uncorrelated if and only if they are
independent.

Theorem 4.31 identifies the parameter p 1n the bivanate gaussian PDF as the correlation
coefficient py r of brvariate Gaussian random vanables X and ¥, Theorem 4.17 states
that for any pair of random vanables, |px r| < 1, which explains the restniction |p| < 1
in Definition 4.17. Introducing this inequality to the formulas for conditional vanance in
Theorem 4.29 and Theorem 4.30 leads to the following inequalifies:

Var[F|X =x] =o3(l — p7) < o, (4.154)
Var[X]¥ = y] = ai(l — p7) < 0. (4.155)
These formulas state that for p #£ 0, learning the value of one of the random variables leads

to a mode] of the other random vanable with reduced vanance. This suggests that learning
the value of ¥ reduces our uncertainty regarding X



Definition of the Bivariate Normal Distribution

Suppose that Z; and Z, are independent random variables, each of which has a standard
normal distribution. Then the joint p.d.f. g(z;, z;) of Z, and Z, is specified for all values
of z; and z, by the equation

1 1 5 3 .
glz),2:) = Eem[i{z' +:2)] ) (5.12.1)

For constants 1, u,, ). 0, and p such that —00 < yu; <00 (i =1,2), 0, >0
(i=1,2),and -1 < p <1,

we shall now define two new random variables X, and X ;
as follows:
X\ =01Z, + py,

X, =05 [,ozl +(1— pz)‘ﬂzz] + . (5.12.2

_ i If the relations (5.12.2)
are solved for Z, and Z, in terms of X, and X,
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The transformation from Z, and Z, to X, and X 2- is a linear transformation; and it
will be found that the determinant A of the matrix of coefficients of Z, and Z has the
value A = (1 — p°)"20,05. Therefore, as discussed in Section 3.9, the Jacobian J of the

inverse transformation from X, and X, to Z, and Z, is

1 .
J=— : (5.12.3)

TA (- o) o0y

Since J > 0, the value of |J| is equal to the value of J itself. If the relations (5.12.2)
are solved for Z, and Z, in terms of X; and X,, then the joint p.d.f. f(x,, x») can be
obtained by replacing z, and z, in Eq. (5.12.1) by their expressions in terms of x, and x,,
and then multiplying by |J|. It can be shown that the result is, for —o0 < x; < 00 and
—00 < Xy < 00,

2
X, _ expy —
fxy, x3) 27(1— p2) 20,0, p' 2(1—,03)[( of

2
_zp(xa ﬂl) (xz H2)+(M):“_ (5.12.4)
0'1 ('72 ) (72

When the joint p.d.f. of two random variables X and X is of the form in Eq. (5.12.4),
itis said that X, and X, have a bivariate normal distribution. The means and the variances
of the bivariate normal distribution specified by Eq. (5.12.4) are easily derived from the
definitions in Eq. (5.12.2). Because Z, and Z, are independent and each has mean 0 and

variance 1, it follows that E(X))=u,, E(Xy) = Uy, Var(X ) = af, and Var(X,) = 4! o
Furthermore, it can be shown by using Eq. (5.12.2) that Cov(X |, X,) = pO105. Tl;eref{n-é _
the correlation of X and X, is simply . In summary, if X ; and X, have a bivariate normai
distribution for which the p.d.. is specified by Eq. (5.12.4). then '

E(X;)=u; and Var(X,-):orf fori =1, 2.
Also,

p(Xy, Xs) = p.
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Let the ran-
dom variables ¥V and W be defined by two functions of X and ¥

V=g(X,¥) and W =_g(X.Y). (6.20)

Assume that the functions v(x, yv) and w(x, y) are invertible in the sense that the equa-
tions v = g (x, y) and w = g(x, y) can be solved for x and y, that is,

x = hy(v, w)and vy = hs(v, w).

w
dx  dy

J(x,y) = det

=0l s
dx  dy

The determinant J(x, y) is called the Jacobian of the transformation. The Jacobian of
the inverse transformation is given by

dx  dx
W  ow
J(v, w) = det ay  ay
v ow
It can be shown that
|J(v, w)| = _r
|7(x, ¥

We therefore conclude that the joint pdf of V and W can be found using either of the
following expressions:

fxy(h(v,w), (ha(v, w))
17 (x, y)

= fxy(h(v, w), (hy(v, w))|J (v, w)l. (6.22b)

fvw(v,w) = (6.22a)
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JOINTLY GAUSSIAN RANDOM VECTORS
The random variables X, X>..... X, are said to be jointly Gaussian if their joint pdf 15
given by

exp{—i{(x — m)TK'(x — m)}
e al )

(27)"2| K |12

flx) = fryxe . e (Xraoo. Xy) (6.42a)



where x and m are column vectors defined by

X iy E[X;]
x=|"2]| m=|™|=|FX]
o m)  LELX]

and K is the covariance matrix that is defined by

VAR(X;) COV(X,. X3) ... COV(X,. X,)
K- L"uv[.jrl..m wmrf{xzj L"D\"[..:'E'g...?:',.]_ (6.425)
COV(X,. X)) . VAR(X,)

The (.)7 in Eq. (6.42a) denotes the transpose of a matrix or vector. Note that the co-
variance matrix is a symmetric matrix since COV(.X;, X;) = COV(X;. X;).

Equation (6.42a) shows that the pdf of jointly Gaussian random variables is com-
pletely specified by the individual means and varianees and the pairwise covariances. It
can be shown using the joint characteristic function that all the marginal pdf’s associat-
ed with Eq. (6.42a) are also Gaussian and that these too are completely specified by
the same set of means, variances, and covariances.

Example 6.20

Werify that the two-dimensional Gaussian pdf given in Eq. (5.61a) has the form of Eq. (6.42a).
The covariance matrix for the two-dimensional case is given by

K = |: ﬁ"% Pr,r'-"1*'-'|’z:|1

Py y '5"%

where we have used the fact the COV(X,, X;) = pyyoo;. The determinant of K is of
a3 (1 — p*y y) so the denominator of the pdf has the correct form_The inverse of the covariance
matrix is al=o a real symmetric matrix:

K- = 1 |: ﬂ"z! Py iy _

o3l — piy) | —pxymios o

The term in the exponent is therefore

+f1 v — m }|: o3 _Px.vﬂlﬂ'zi|_f - ml]
oozl — F'i-r]' ah * —Pxy T T o] ]

1
a1 — F'i',r]'

— {fI - m:}-":ﬂﬂl - Iﬁx,v{fl - "!:l}-lrﬂﬂf'[}' - ml]'-"ﬂz} + “..1-' - ml}fﬂz}]
{1 - Fi'.r]' -
Thus the two-dimensional pdf has the form of Eq. (6.42a).

a3z — my) — py ypoyay(y — o) ]
—pxymaa(x — m) + aily — m;)

(x —my, v — m1}|:




