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4.4 Exponential Family of Distributions

A family of PDFs (or PMFs) of the form

fx(x:0) = h(x)exp{n ' (6)T(x) — A(0)}, (4.126)

is called an exponential family. The function T(x) is called the sufficient statistic.

fx (x:m) = fe.[;r]v:-;p{r;*T{ir ) — Al u_}}. (4.127)

is called the canonical (or natural) exponential family.

+* The exponential family of distributions includes the exponential,
gamma, normal, Poisson, binomial distributions, etc.



Example 4.3: Normal distribution. Consider a normal RV X ~ N(z, o). With @ = (u, o) we
write the PDF of each sample z; (i =1,2,...) as
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As in the previous example, we can present the normal distribution in the canonical exponential
family form by identifying
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h(X) = 7o A(n) = = + log o.

We can write the original parameter as 8 = (u, o), where p = % and 02 = n'—l Hence,
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4.5 Bayesian Inference and Conjugate Priors

%+ Suppose that an observed sample X is drawn from a certain family of
distributions specified by parameter 8.

** The Bayesian treats this parameter as a RV ©, which is assigned a prior PDF
(8)=fo(6).

% If RV X is a discrete RV, we have from Bayes’ theorem (2.63)

p(z|0)=(0)

T(@x) =
w(6l) p(x)

(4.133)

where p(z) = ¥, p(z|0)m(0). plx) = [, p(x|0)=(6)do.

+* If the RV X is a continuous RV,

(4.134)

where f(z) = [, f(z|@)=(0)db. f(x) =Y, f(z|0)x(6)



*** The conditional PDF f(x|9) is called the likelihood function, when it is
viewed as a function of 8 with given x, and is denoted as

L.(8)= f(z|#) or L,.(0)= p(x|0), (4.135)

** Then the posterior distribution can be written as
m(0|x) oc Lo (0)m(0). (4.137)

¢ For certain choices of the prior distribution, the posterior distribution
has the same mathematical form as the prior distribution. Such prior
distribution is called a conjugate prior (distribution) of the given
likelihood function.



Example 4.4: The Bernoulli distribution and its conjugate prior, the
beta distribution

“* Write the probability of success as 8 (instead of p).

¢ Define the binary variable X; which takes on 1 or 0, depending on the ith trial
is a success (s) or failure (f).

+ Then, we can write p(z;|8) = 07 (1 — @)} =1,

% Fornindependent trials we observe thedata = )T

The likelihood function of 6 given x is

— Hl:: 1% (] — H}” b Db 1 T (4.139)

¢ As a prior distribution, consider the beta distribution:

A § ) | |
m(f) = Beta(f; a, 3) = Blo ) L 0<e<]l.a>0, >0, (4.140)
'.._n-. 17 ]

where *
H[n.:ﬂ:/ g* 11 —0)"1de (4.141)
0

a and B are called prior hyperparameters (cf, the model parameter 8).
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Figure 4.8 The PDF of beta distribution Beta(#; o, 3) of (4.140) for (a) « = 3 = 0.5,1.0,5 and 10;
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Figure 4.8 The PDF of beta distribution Beta(@; «, B) of (4.140) for(a) « = g = 0.5, 1.0, 5, and 10; (b)
(e, B) =(1,2),(1,4), (1, 10), (10, 5), and (5, 2).



¢ The beta function is related to the gamma function (see (4.31) of p. 78)
I'(a)T(3)
MNa+8)

+* The mean and variance of this prior distribution are

af
; 1 Var|©| = .
a+ 3 and Var(e) (a+B8)2(a+5+1)

Bla,3) = (4.142)

X

E[6] = (4.143)

** The posterior probability can be evaluated as

7(6|x) x p(x|0)7(0) x H=-171(1 — §)" L1 71ga—1(1 _ )51
o fla+i =1 (1-— 0)(3+n—}:;‘_, z¢)-1 (4.144)
¢ Thus, the posterior probability is also a beta distribution Beta(6; a, B,),
r;, and f1 =B +n —ZI,'. (4.145)
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where we call a; and B, the posterior hyperparameters, and

\ — A .r1—+—.]‘-_1+1,.—+—.1’;1
Oure(z) =T, =

mn

is the maximum likelihood estimate (MLE) of 6, which is the value that
maximizes the likelihood function L,(6) of (4.139).

%+ As the sample size n increases, the weight on the prior means diminishes,
whereas the weight on the MLE approaches one. This behavior illustrates
how Bayesian inference generally works.

+** For a likelihood function that belongs to the exponential family, i.e.,

L,(0)= h{.l?]f‘}{p{l}. (0)T'(x) — A(O)}, (4.147)

conjugate priors can be constructed as follows:
flO; e, 3) x {1.‘-111{;;' (B)ex — SA(8)}, (4.148)
then the posterior distribution takes the form

flBlx: e, F) x t':'-:]}{r;- [H][n - T':.r}] — 1+ 'f]—HHJ} (4.149)

i.e., a; =+ T(x), and B, =1+ B.



Example 4.5: Conjugate prior for the exponential distribution. The likelihood
function for the exponential distribution has the form (cf. (4.25))

Lc(A) = hexp(—ix), x>0, (4.150)

where A is the model parameter. We choose a conjugate prior having the form of a
gamma distribution (cf. (4.30)):

B—1 —ai
fa,B) = ”’{”‘lll(mf A0, (4.151)

where o« and f are the prior hyperparameters. Using (4.137), the posterior distribution

1s computed as
x:o, . =0, 4,
Fa] ) FrBLD) = ( )

which 1s a gamma distribution such that the posterior hyperparameters are o) = o + x

and f; = B + 1. If M independent samples x1, ..., xp, are drawn from an exponential
distribution, the likelihood function for the vector x = (xy..... _rM)T has the form

M
Ly(h) =M exp (—le,-) x> 0. (4.153)
i=l

Using the conjugate prior given by (4.151), we find that the posterior distribution

1s a gamma distribution with posterior hyperparameters ey =a 4+ M and ) = f +
M

Zf:l Xi- 0



Example 4.6: Conjugate prior for a normal distribution with fixed variance o°.

The likelihood function for a normal family of distributions with fixed variance o has
the form (cf. (4.25))

Le() = — =y (4.154)
= exp | — : :
where p 1s the model parameter. Choosing a normal distribution as the conjugate prior,

we have
. I (e — J’-"Z{]-]2
fp: o, og) = exp | — 5 , (4.155)
\J/2mo; 20



with prior hyperparameters pg and crﬂz. Applying (4.137), we find that the posterior
distribution has the form

| —x)? — 2
f(ux;nu,cr&)mcxp{—i {{” - r f”} ]] (4.156)
o a;
After some algebraic manipulations, we obtain
0 X i 27

) 11 1 g
fx:po.og) ccexp | — | =+ = | [ — T—F (4.157)

2\9% 9 ot

Hence, the posterior hyperparameters are
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Generalizing to the case of n independent samples, 1.e., x = (x1, x2, ..., x,,}T._, WE can
show that the posterior hyperparameters are given by

i=1-Xi 4 Hy —1
al oy 5 n 1
= — 1 and oy = — +— : (4.158)
=+ =3 o Th
a (¥

The second posterior hyperparameter .-:lrl2 1n the last expression 1s the harmonic mean
of the prior cr[f and the varnance of data. For notational conciseness, the inverse of the
variance, h = o2, called the precision, is often used in the Bayesian statistics litera-
ture. From the last expression, for instance, the posterior precision 1s simply given by
hy = nh + hy, where hy = .:r{],_2 1s the precision of the prior distribution. Use of pre-
cision instead of varnance eliminates most of the inversions in the equations presented
above. [
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