General Bivariate Normal

Let Z;,Z>, ~ N(0,1), which we will use to build a general bivariate normal
distribution.

1 1
f(z1,2) = 5y &P [—5(212 + z§)]

We want to transform these unit normal distributions to have the follow
arbitrary parameters: pux,py.ox,0y.p

X =ox41+ px
Y =oy[pZi + /1 —p22] + py

General Bivariate Normal — Marginals

First, lets examine the marginal distributions of X and Y/,

X=ox/1+ 15"
= oxN(0,1) + ux
= N(ux.0%)

Y =oylpZi + V1—p2D] + py
= oy[pN(0,1) + /1 — p2N(0,1)] + py
= oy[N(0,p%) + N(0,1 — p?)] + py
=oyN(0,1) + py
= N(uy,0v)



General Bivariate Normal - Cov/Corr

Second, we can find Cov(X, Y) and p(X,Y)

Cov(X,Y) = E[(X — E(X))(Y — E(Y))]
=E [(gle + ux — px)ovlpZy + V1= p22) + py — ruv]]
= E [(oxZ1)(ov[pZs + V1= P2 2])]
— oxoyE [pzf + MZIZQ]

= oxoypE[Z]]

=0oxoyp

Cov(X,Y) _

TXTY

p(X,Y) =

General Bivariate Normal - RNG

Consequently, if we want to generate a Bivariate Normal random variable
with X ~ N(ux,0%) and Y ~ N(uy,0%) where the correlation of X and
Y is p we can generate two independent unit normals Z; and Z2 and use
the transformation:

X =oxZ1+ px
Y =ov[pZi1 + V1—- p?2L) + py

We can also use this result to find the joint density of the Bivariate
Normal using a 2d change of variables.



Multivariate Change of Variables

Let Xi,..., X, have a continuous joint distribution with pdf f defined of 5. We can define n
new random variables Y%...., ¥, as follows:

Y]:ﬂ(.xl,...,Xn) R Yn:rn(.x]_?...,‘x'n)

If we assume that the n functions rq,....r, define a one-to-one differentiable transformation
from 5 to T then let the inverse of this transformation be

Xlzsl{}’h-“:}’n) Xn:5n(y1:"'ryn]
Then the joint pdf g of Y1,...,Ys is

_ [ fst )] for (yry) €T
g1, ym) = {[:- otherwise
Where
|- t".:'_)-']_ ?J_Vn -l
J = det : .
[ 95y ,,, 85 J
t"})-']_ E'yn

General Bivariate Normal - Density

The first thing we need to find are the inverses of the transformation. If
x = ri(z1,22) and y = rn(z1, z2) we need to find functions h; and hy such

that Z1 = s1(X, Y) and 2> = 5(X., Y).

X =oxZy + px
X — px
ax

z =

Y =ovy[pZi + V1 - p?Z] + py

Y — X —
Hy =p J.U’X + fl_pzzz
X

1 Y — X —
Z, = [ Hy —p Fx]
Vv 1—p? ay TX
Therefore,
X — ux 1 Y — K1y X — Hx
s1(x, = S (x, = —
) == e = 7 [



General Bivariate Normal - Density

Next we calculate the Jacobian,

[ 6;_51 g_ﬁ :| [ % D ] 'vl
J = det éx ay = det —p 1 —
o o ax\1=p?  oyy/1-p2 oxoyyV1—p?

ax dy

The joint density of X and Y is then given by

f(x.y) = flz1, 22) ||
1

1 2 2
= —exp|—-(z; + = J| =
5 FJ'[ 2(1 2)}||

1 1 3 2
— ——( +
— l_pﬁp[ (& zgr]

1

2 2
exp _ 1) fx—px N 1 y—uy X Ex
2rayay/1 — p? 2 Ty 1— p? oy 3%

1 [ -1 (I!x—.ux)2 (v — uy) {x—#x}l{y—#v))}
+ p

exp -2
Imayay(l — p2)l/2 2(1 — p?) a’i JE, oy ay

General Bivariate Normal - Density (Matrix Notation)

Obviously, the density for the Bivariate Normal is ugly, and it only gets
worse when we consider higher dimensional joint densities of normals. We
can write the density in a more compact form using matrix notation,

2
y Hy POXTY Ty

() = 5 (Gt T) 2 exp |~ (x— ) T x— 1)

We can confirm our results by checking the value of (det £)~1/2 and
(x — ) TE"Y(x — p) for the bivariate case.

)—1f2 B 1

-1/2 _ 2 2 2.2 2 —
(detX) = (CTXUY proxoy rxov(1= )P



General Bivariate Normal - Density (Matrix Notation)

Recall for a 2 x 2 matrix,
A=(ab A'1=1(d —b)= 1 (d —b)
c d det A —c a ad — be —c a
Then,
(x=p)TE7H (x—p)
1 (x—,ux )T( a2 —paxay)(x—px)
o‘ia‘%(l —p2) Yy —uy —POXOY Gi Y = py

1 ( o3 (x — pux) — poxoy(y — py) )T( X — px )
0202 (1 — p2) \ —poxoy(x —px)+ox(y — py) Y = Hy

= m (0% (x — x)? = 2poxov(x — px)(y — py) + o (v — nv)?)
_ 1 (x — px)? (x = px)y —py) | (y—py)?
C1—p2 ( o% —2 oxTy - oy, )

General Bivariate Normal - Examples

X ~ N(0,1), Y ~ N(0,1) X ~ N(0,2), Y ~ N(0,1) X ~ N(0,1), Y ~ N(0,2)

p=0 p=0 p=0




v
- 3 "l ? 4
X ~ N(0,1), Y ~ N(0,1)
p=0.25
v

X ~ N(0,1), Y ~ N(0,1)

p=—0.25

X ~ N(0,1), Y ~ N(0,1)

p=—0.75

XNN(O’I)’ YNN(°$1)

p=05

X ~ N(0,1), Y ~ N(0,1)

p=—05

X ~ N(0,2), Y ~ N(0,1)

p=—0.75

X ~ N(0,1), ¥ ~ N(0,1)

p=0.75

X ~ N(0,1), ¥ ~ N(0,1)

p=—0.75

X ~ N(0,1), Y ~ N(0,2)

p=—0.75




Multivariate Normal Distribution

Matrix notation allows us to easily express the density of the multivariate
normal distribution for an arbitrary number of dimensions. We express the
k-dimensional multivariate normal distribution as follows,

X ~ Ni(p. )
where p is the k x 1 column vector of means and X is the k x k

covariance matrix where {X};; = Cov(X;, Xj).

The density of the distribution is

F(x) = 75 (det £) /2 exp [—é(x —w)E x— )

(27)

Multivariate Normal Distribution - Cholesky

In the bivariate case, we had a nice transformation such that we could
generate two independent unit normal values and transform them into a
sample from an arbitrary bivariate normal distribution.

There is a similar method for the multivariate normal distribution that
takes advantage of the Cholesky decomposition of the covariance matrix.

The Cholesky decomposition is defined for a symmetric, positive definite

matrix X as
L= ChoI(X)

where L is a lower triangular matrix such that LLT = X.



Multivariate Normal Distribution - RNG

Let Zy,...,Zk ~N(0,1) and Z = (Z1,...,2Z)" then

o+ Chol(X)Z ~ Ny (1, )

this is offered without proof in the general k-dimensional case but we can
check that this results in the same transformation we started with in the
bivariate case and should justify how we knew to use that particular
transformation.

Cholesky and the Bivariate Transformation

We need to find the Cholesky decomposition of X for the general bivariate

case where )
E — ( GFX pgng‘f' )
POXTY Ty

We need to solve the following for a, b, c
a 0 a b\ a ab o cri, POXTy
b ¢ 0 c /) \ab P+ ) \ poxoy cr%,

This gives us three (unique) equations and three unknowns to solve for,

a =oy ab = poxoy b% + 2 :cr%,

a =Ty
b= poxoy/a= poy

c=1y/o% — b2 = oy(1— p?)*/?



Cholesky and the Bivariate Transformation

Let Z;, Z, ~ N(0,1) then

( i(, ) = p + Chol(X)Z

(#x)l(ﬂx 0 )(21)
Ly poy oy(1—p?)/2 7>
(#x ) | ox41 )
Ly poyZy +oy(1— p?)/22Z,

X =pux +oxta
Y = py +oy[pZi + (1 - p°) /2 23]

Conditional Expectation of the Bivariate Normal

Using X = ux + oxZy and Y = py + oy[pZ; + (1 — p?)/22,] where
Z1, 2> ~ N(0,1) we can find E(Y|X).

E[Y|X=x]=E [p:y +oy (,gz1 +(1- pz)lf’?zz) | X = x}

X1 —92)1”222) X :X]

X
:E[ﬂY+UY(p

ox
X—
= py +oy (p X +(1—p2)1f‘25[22|x:x])
X_
= py +oyp ( ﬁx)
ox

By symmetry,

E[X]Y =yl =px +oxp (y—mf)
Ty



Conditional Variance of the Bivariate Normal

Using X = pux + oxZy and Y = py + oy[pZy + (1 — p?)/22,] where
Z1,2Z> ~ N(0,1) we can find Var(Y|X).

Var[Y|X = x] = Var [p&y +oy (pzl +(1- p2)1f222) | X = x]

= Var[oy(1 — p?) 22| X = X]
= a%(1-p%)

By symmetry,
Var[X|Y = y] = 0% (1 = /)

Example - Husbands and Wives (Example 5.10.6, deGroot)

Suppose that the heights of married couples can be explained by a bivariate normal distribution.
If the wives have a mean heigh of 66.8 inches and a standard deviation of 2 inches while the
heights of the husbands have a mean of 70 inches and a standard deviation of 2 inches. The
correlation between the heights is 0.68. What is the probability that for a randomly selected
couple the wife is taller than her husband?

Example - Conditionals

Suppose that X; and X have a bivariate normal distribution where E(X;1|X2) = 3.7 — 0.15X>,
E(X3|X1) = 0.4 — 0.6X7, and Var(Xz|X;) = 3.64.

Find E(X1), Var(X1), E(X2), Var(X2), and p( X1, X2).



