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Random Vectors and Matrices

A random vector is a vector whose elements are random variables.
Similarly a random matrix is a matrix whose elements are random variables.

Specifically, let X = {X|;} be an n X p random matrix.
Then the expected value of X, denoted by E (X), is the n X p matrix of numbers

(if they exist)

e The expected value of a random matrix

E(X11) E(X1) E(X1,)
E(X) = E(X21) E(X22) E(X2p)
| E(Xn1) E(X52) E(Xnp) |
where, for each element of the matrix,
* if X, is a continuous random variable with
I X, fij(xig) dx;; probability density function f;(x;;)
E(X,) = | C
%)= if X; is a discrete random variable with
L E‘ FiiPij (i) probability function p;;(x;;)

e E(X+Y)=EX)+EY)

e E(AXB) = AE(X)B



Example 2.11 (Computing expected values for discrete random variables)
Suppose p = 2 and n = 1, and consider the random vector X' = [X;, X5|. Let
the discrete random variable X; have the following probability function

X, | -1 0 1

Similarly, let the discrete random varibale X5 have the probability function

Xo | 0 1
p2(X2) | 0.8 0.2

Calculate E(X).

Then E(X,) = 2, x,p, (%) = (=1)(3) + (0)(3) + (1)(4) = .1.

allx,

Then E(X,) = 2, x,p,(x;) = (0)(.8) + (1)(2) = 2.

altx,

Thus,
~ E(X]):] ~ [1}
X = [E(Xz) 2
Mean Vectors and Covariance Matrices
Suppose X = [X1, X5,...,X,]isapx1random vectors. Then each element

of X is a random variables with its own marginal probability distribution.

e The marginal mean u; = E(X;),2=1,2,...,p.

e The marginal variance 02 = E(X; — ;)i =1,2,....p.



Specifically,

([~ gy, T Xiisa continuous random variable with probability
J’ i fi(x)dx, density function f(x;)

My = \ N
S x,pi(x) if X, is a discrete random variable with probability
| iPii function p,(x;)
([ (x — w ) f(x)dx if X, is a continuous random variable
J . Y™ BTSN ith probability density function f(x,)
o = 4
2 (x. — m)?p,(x)) if X, is a discrete random variable
L i} Pits with probability function p;(x;) (2-25)

LY

It will be convenient in later sections to denote the marginal variances by oy, rather
than the more traditional o7, and consequently, we shall adopt this notation.

e The behavior of any pair of random variables, such as X; and X, is described
by their joint probability function, and a measure of the linear association
between them is provided by the covariance

oir = E(X; — pi) (X — i)

T E(Xi - wi) (X, — fey )

(" (7 Nt if X, X, are continuous
J‘_m Lﬁ (= ) (v = ) (6 X A% % o dom variables with

the joint density
{ function f, (x;, x;)
- _ _ Uy if X, X, are discrete
Ec‘f a%:,‘ (i = w) (i = i) Puc (o %) random variable with
joint probability
t function p;, (x;, x;)

(2-26)

and u; and u,, i,k = 1,2,..., p, are the marginal means. When i = k, the covari-
ance becomes the marginal variance.



The means and covariances of the p X 1 random vector X can be set out
as matrices. The expected value of each element is contained in the vector of
means g = E(X), and the p variances a;; and the p(p — 1)/2 distinct covariances
o, (i < k) are contained in the symmetric variance-covariance matrix X =
EX - p)(X— p). Specifically,

(s

E(X)) oy
E(X,) Ky
and
—EX-m)X-n)
X, — M
el TR | X e X ]
X, =ty
X, = m)’ (X, = ) (X — m2) 0 (X = ) (X = 4
_ (X, — #2)'()(1 - ) (X, _ P'vz)z (X, — #2)‘(Xp - pr)
(Xp - au‘p)(X] - ) (Xp - F'p)(Xz - .P-z) (Xp - ""’p)z
E(X, = m) EX, — w) (X, = ) - E(XG = ) (X, — )
_ E(X, - Mz?(x1 — W) E(X, - #)? E(X, - Nz?(Xp - Kp)
E(Xp - lu‘p)(Xl - .Iu’l) E(Xp - |u’p)(X2 - |u’2) ‘“ E(Xp - Iu'p)z
or
Oy 013 7" Oy
3 = Cov(X) = | 72 720 7w (2-31)
LOp1 Op2 Opp _




e Statistical independent X; and X, if
P(X; <x;and Xy <) = P(X; < a3) P(Xy < )

or

fir(zi,xp) = fi(z;) fr(zr).

e Mutually statistically independent of the p continuous random
variables X, X5, ..., X, if

fro. p(@1,m2,. .0 2p) = fi(x) fa(w2) - - fo(zp)

for all p-tuples (x;, Xz, .- , X))

e linear independent of X;, X, if

Cov(X;, X)) =0



Example 2.12 (Computing the covariance matrix) Find the covariance
matrix for the two random variables X; andX, introduced in Example 2.11
when their joint probability function pio(21, 22) is represented by the entries in
the body of the following table:

X9
X 0 1 pi(xp)
-1 24 06 3
0 16 14 3
1 40 00 4
py(x3) 8 2 1

We have already shown that p, = E(X,) = .1and p, = E(X;) = .2. (See
Example 2.12.) In addition,

o, = E(X, - .""1)2 = 2 (X - 'l)zp] (%)

allx,

= (=1 = .1)2(3) + (0 = .1D)*3) + (1 — .1)*(4) = .69

oy, = E(X; — Hz)z = 2 (x; = -2}2P2(x2)

allx,
= (0 = 2)%(.8) + (1 — 2)*(.2)
= .16

o, = E(X; — ) (X, — By) = E (x; = 1) (x; = 2)p1a{xy, x3)

all pairs(x,,x;)
=(-1—-.1)0 - 2)(24) + (-1 = .1)(1 — .2)(.06)
+ o4 (1= 1)1 - 2)(00) = —.08
oy = E(X, — ) (Xy — ) = E(X; — u)(X, — pp) = 0, = —.08



Consequently, with X' = [ X, X;],

. E(X1) Mg _ 1
”=ﬂm’[m&J'[m}’EJ

2=EX - p)X - p)

and

_ [ - wy (X, = ) (X, - Mz):|
(Xy — w)(X) — ) (X, — #2)2
_ —E(XI - 1) E(X, — u) (X, - .\U-z):|
LE(X, — p)(Xy — ) E(X; — )
. _0'11 U'lzj _ [ .69 _.08}
Loy o, ] | -08 16 -

We note that the computation of means, variances, and covariances for dis-
crete random variables involves summation (as in Examples 2.12 and 2.13), while
analogous computations for continuous random variables involve integration.

Because o, = E(X, — u;)(X, — pn,) = oy, it is convenient to write the
matrix appearing in (2-31) as

Tip Oy "7 Oy
=EX-p)(X-p)y=|72 %27 % (2-32)
Tip G2p 77" Tpp

We shall refer to u and X as the population mean (vector) and population vari-
ance—covariance (matrix), respectively.



e Population correlation coefficient p;;

Pik =

ik

v Tiin/ Tkl

The correlation coefficient measures the amount of linear association between
the random variable X; and X}..

Detail:

It is frequently informative to separate the information contained in vari-
ances o; from that contained in measures of association and, in particular, the
measure of association known as the population correlation coefficient p;,. The
correlation coefficient p,, is defined in terms of the covariance o,, and variances

o;; and o, as

Pix = 7

Tik

VO VO

(2-33)

The correlation coefficient measures the amount of linear association between the

random variables X, and X,. (See, for example, [2].)

The population correlation matrix p

Let the population correlation matrix be the p X p symmetric matrix

Oy Y Tip
Vﬂn\/an Vﬂ'u\/ﬂ_fzz \"{T]]\/a-pp
O G2 . %%
\fﬂ'n Vo, Vo '\/E'zz VO VOpp
| Vo, Vay, Vo, Vo, VOpp VUpp |
L pya Py
P2 1 ' P'::p
I—plp pzp te 1 el

(2-34)



and let the p X p standard deviation matrix be

Vg, 0 - 0
v | V"fég 0 (2-35)
0 0 - Vo,
Then it is easily verified (see Exercise 2.23) that
VIZpviE = % (2-36)
and ‘ |
Cp=(WATEVAT e

That is, ¥ can be obtained from V2 and p, whereas p can be obtained from X. '
Moreover, the expression of these relationships in terms of matrix operations
allows the calculations to be conveniently implemented on a computer. ;

Example 2.14 (Computing the correlation matrix from the covariance
matrix) Suppose

4 1 2 oy Oy Oy
E"T‘ 1 9 _3 = T2 T33 Oy
2 _3 25 05 023 0-33
Obtain V'/? and p
Here
Vo, 0 0 2 00
ViZ=| 0 Vo, 0 [=[030
0 0 Vo, 005



and

(VUZ)—lz (V],’Z)—l

e et

e Define

(v],’Z)—l = [

Consequently, from (2-37), the correlation matrix g is given by

o O M=

A

L Ll =Y

E(X —p)(X —p)

|

X1
o1

Y12
Y29

|

0 0
Lo
0}
1 1
6 3
-l
_%1

and then p=EX =

4

o O e

O W D
wmpe— O O

1
2
-3 0
0

2

K1
Hq

Hg+1

Hp

=

c [

o o

Ly |—




e It is sometimes convenient to use COV(X(”, X(z)) note where
Cov(XW, X =%, =%,

is a matrix containing all of the covariance between a component of xW
and a component of x®



The Mean Vector and Covariance Matrix for Linear
Combinations of Random Variables

e The linear combination ¢'X = ¢; X + --- + ¢, X, has
mean = E(c'X) =c'u

variance = Var(c'X) = ¢'Sc¢
where p = E(X) and X = Cov(X).

e Let C be a matrix, then the linear combinations of Z = CX have

e

pz = E(Z) = E(CX) = Cpx

Yz = Cov(Z) = Cov(CX) = CxxC’

2.1. Quadratic Form Theorem 1.
Theorem 1. Ify ~ N(p,. £,), then
z2=Ay ~ N(p. =Ap,: X. = AEyA;)
where A is a matrix of constants.
2.1.1. Proof.
E(z) = E(Ay) = AE(y) = Ap,
var(z) = E[(z — E(2)) (z = E(2))’]
= E[(Ay — Apy)(Ay — Apy)']
= E[A(y — py)(y = py))' A']
= AE(y — p)(y — py)' A’
= A%, A’



2.1.2. Example. Let Y1,..., Y, denote a random sample drawn from N(y, 02}. Then

Yi In o2 ... 0
y=| |~~[| |.| 7 4)
Y, e 0 a?

Now Theorem 1 implies that:

7=lvit4ly,
n

(E,...,E)Y=AY
n n

~ N(u, 0?/n) since

1 1 !
(—._...,—) : ]l =p and
n n

S|

(5)



e Sample Mean

e Sample Covariance Matrix

S11 - Slp
Sn = : :
| S1p " Spp
1 ™
=2 (T —T)
j=1
T
% Zl(ﬁ?jl T1)(zjp — Tp)
L =

oy Tp)
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6.1 VECTOR RANDOM VARIABLES

The notion of a random variable is easily generalized to the case where several quanti-
ties are of interest. A vector random variable X is a function that assigns a vector of
real numbers to each outcome { in §, the sample space of the random experiment. We
use uppercase boldface notation for vector random variables. By convention X is a col-
umn vector (n rows by 1 column). so the vector random variable with components
Xi. X5, ..., X, corresponds to

X

X
X=|"7|=[x.%....X]"

X
where “T" denotes the transpose of a matrix or vector. We will sometimes write
X = (Xj. X5..... X,) to save space and omit the transpose unless dealing with matri-

ces. Possible values of the vector random variable are denoted by x = (xy, x3,..., x,)
where x; corresponds to the value of X,.
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6.3 EXPECTED VALUES OF VECTOR RANDOM VARIABLES

In this section we are interested in the characterization of a vector random variable
through the expected values of its components and of functions of its components. We
focus on the characterization of a vector random variable through its mean vector and
its covariance matrix. We then introduce the joint characteristic function for a vector
random variable.

The expected value of a function g(X) = g(X,,..., X,,) of a vector random vari-
able X = (X, X5,.... X)) is given by:

/ / glxg, o) (v, o, x,) dxy dx;...dx, Xjointly

E[Z] = continuous
> D g(xx L x)px(x. X, X)) X discrete.
N % (6.25)

An important example is g(X) equal to the sum of functions of X. The procedure
leading to Eq. (5.26) and a simple induction argument show that:

E[gi(X) + &0X) + -+ + gu(X)] = E[g1(X)] + -+ + E[ga(X)].  (6.26)

Another important example is g(X) equal to the product of n individual functions of
the components. If X;..... X, are independent random variables, then

E[gi(X1)g(X3) ... g.(X0)] = E[g1(X1) | E[g(X3)] ... E[ga(XW)].  (6.27)



6.3.1

Mean Vector and Covariance Matrix

The mean, variance, and covariance provide useful information about the distribu-
tion of a random variable and are easy to estimate, so we are frequently interested
in characterizing multiple random variables in terms of their first and second mo-
ments. We now introduce the mean vector and the covariance matrix. We then in-
vestigate the mean vector and the covariance matrix of a linear transformation of a
random vector.

For X = (X, X5,..., X,)., the mean vector is defined as the column vector of
expected values of the components X:

X E[X;]
my = E[X] = E ‘},(2 sl E [f{ﬂ (6.28a)
X, E[X,]

Note that we define the vector of expected values as a column vector. In previous sec-
tions we have sometimes written X as a row vector, but in this section and wherever we
deal with matrix transformations, we will represent X and its expected value as a col-
umn vector.

The correlation matrix has the second moments of X as its entries:

E[X]] E[Xlﬂzfz] o E[XX,]
Ry = | ERX] EXG] . EDGX] | (&25h)
The covariance matrix has the second-order central moments as its entries:
E[(X1_m1)2] E[(Xy=my)(Xo=-my)] ... E[(X; = m)(X, —m,)]
E[(Xy=my) (X —my)] E[(X,=my)’] o E[(Xy = mp)(X, = my) ]|
E[(Xn_m!!)[}(l_ml}] E[(Xn_"rn}{XZ_MZJ] E[{Xn - nrn}z]
(6.28c)

Both Rx and Kx are n X n symmetric matrices. The diagonal elements of Ky are
given by the variances VAR[ X, ] = E[(X; — m,)?] of the elements of X. If these ele-
ments are uncorrelated. then COV(X;, X;) = 0 for j # k. and Ky is a diagonal ma-
trix. If the random variables X, ..., X, are independent, then they are uncorrelated
and Ky is diagonal. Finally, if the vector of expected values is 0, thatis,m; = E[X;] =0
for all k, then Ry = Ky




Example 5.18 Jointly Gaussian Random Variables
The joint pdf of X and ¥, shown in Fig 5.17.is
1
Fralx, ¥) = —m=—e W20t oo = gy < oo, (5.18)
e 2Vl — g

We say that X and ¥ are jointly Gaussian.! Find the margmal pdf's.
The marginal pdf of X is found by integrating fy y(x, ¥) over y:

f]’{.l'} = —E_:JE‘I_F:E} Ef_‘.l":_]ﬂ‘?ﬁ“_ﬂ':] adw.
eVl — pf J== ’

This is an important special case of jointly Gaussian random variables The general case is discussed in Section 5.9

We complete the square of the argument of the exponent by adding and subtracting p°x°, that is,
vt = 2pxy + pfx? — pPx? = (¥ — px)* — g1’ Therefore

—P—gy =
frlx) = —_— e f e l—peF e Reli-6) 4
201 — pPl= ’

g ™ A y—par 1)

= .fl
Vg ) V2r(1 - #) !

where we have noted that the last integral equals one since its integrand is a Gaussian pdf with
mean px and variance 1 — p”. The marginal pdf of X is therefore a one-dimensional Gaussian
pdf with mean 0 and variance 1. From the symmetry of fy y(x. ¥) in x and y. we conclude that the
marginal pdf of ¥ is also a one-dimensional Gaussian pdf with zero mean and unit variance.



Example 6.6
The random variables X, X;. and X; have the joint Gaussian pdf

E—(jj'+j:f—1.:! gt 'ﬁ;ﬂ]

fx,_r,.x,'[fh X3, X3) = o
Find the marginal pdf of X, and X5. Find the conditional pdf of X5 given X, and X5.
The marginal pdf for the pair X, and X; is found by integrating the joint pdf over x;:
gt e - vIng)
Frox(n, 1) = ﬁ - Wnﬁ'}_.

The above mtegral was carried out in Example 5.18 with p = 1. By substituting the result
of the integration above, we obtain

—J.iﬂ E—;frz
.fx..rflh-‘fﬂ:— -
v Wo2le W e

Therefore X, and JX; are independent zero-mean, unit-variance Gaussian random variables.
The conditional pdf of X5 given X and X is:

E—i_;‘;l'r J.i_ \-{I..J.z + Iﬁ.l;] . ,I'If-\.llu";

f-t.]{x] | X, x3) = I f'_jg'rzf_jltn

E—{'ﬁ;‘i+j}—vinu;| .r"“*“""’i'if

v N v
We conclude that X; given and X5 is a Gaussian random variable with mean .r.J'\.-'E and
varance 172,

Example 6.16

Let X = (X,. X;. X;) be the jointly Gaussian random vector from Example 6.6. Find E[X] and K.
We rewrite the joint pdf as follows:

E_[IE +x3 —Zﬁi Xyrs) f—rfﬂ

Fxpxax,(X15 X2, X3) = : \jl - ( 1 )2 sz—_ﬂ

V2

We see that X is a Gaussian random variable with zero mean and unit variance, and that it is in-
dependent of X, and X5. We also see that X, and X; are jointly Gaussian with zero mean and
unit variance, and with correlation coefficient

| COV(X,.X;)

= —— = COV(X,. Xj).
Px, X, VE —_— (X, Xs)
Therefore the vector of expected values is: my = 0, and
1
1 -—= 0
V2
Kx = 1 .
——= 1 0
V2
0 0 1



6.3.2

We now develop compact expressions for Ry and Kx. If we multiply X,an n X 1
matrix, and XT, al X n matrix, we obtain the following n X n matrix:

X, X XX, ... XX,
xxT = | %2 X, X, X]-= XX, X3 ... XX,
X, XX, XX .. X

If we define the expected value of a matrix to be the matrix of expected values of the
matrix elements, then we can write the correlation matrix as:

Ry = E[XXT]. (6.29a)
The covariance matrix 1s then:

Kx = E[(X = my)(X — my)"]
= E[XX"] - my E[X"] = E[X]my" + myxmy"
= Ry — mymy . (6.29b)

Linear Transformations of Random Vectors

Many engineering systems are linear in the sense that will be elaborated on in Chapter
10. Frequently these systems can be reduced to a linear transformation of a vector of
random variables where the “input” is X and the “output™is Y:

1 /5] “ua iy X]
a s . Xs

y= | a2 [ A2 | - ax
Ay dp ... iy || X,

The expected value of the kth component of Y is the inner product (dot product) of the
kth row of A and X:

ElY] = E|:_ IHHXP] = E;ﬂk;E[X;]‘
= =
Each component of E[Y] is obtained in this manner, so:
E;alj'E[Xf]
=
n i 2 A iy E[X]]
my = E[Y] = ;asz[Xf] _|an an ... ay || E[X]
n L L L. Uy E[XFI]
EanPE[Xj]
= j=1 _

= AE[X] = Amy. (6.30a)



The covariance matrix of Y is then:

Ky = E[(Y = my)(Y — my)'] = E[(AX — Amy)(AX — Amy)']
= E[A(X = mx)(X — my)"'A"] = AE[(X — my)(X — my)"]A"
= AKyAT (6.30b)
where we used the fact that the transpose of a matrix multiplication is the product of

the transposed matrices in reverse order: {A(X — my)}T = (X — my)"AL
The cross-covariance mairix of two random vectors X and Y is defined as:

Kyy = E[(X — my)(Y — '“\r]'T] = E[XYT] = mxmvT = Ryy — '“meT-
We are interested in the cross-covariance between X and Y = AX:
Kxy = E[X = mx)(Y — my)"] = E[(X = my)(X — my)"A"]
— KXAT_ {63“(:}

Example 6.17 Transformation of Uncorrelated Random Vector

Suppose that the components of X are uncorrelated and have unit variance, then Ky = 1, the
identity matrix. The covariance matrix for Y = AX is

Ky = AKAT = AIAT = AAT (6.31)

In general Ky = AAT is not a diagonal matrix and so the components of Y are correlated. In
Section 6.6 we discuss how to find a matrix A so that Eq. (6.31) holds for a given Ky. We can
then generate a random vector Y with any desired covariance matrix Ky.

Suppose that the components of X are correlated so Ky 1s not a diagonal matrix.
In many situations we are interested in finding a transformation matrix A so that
Y = AX has uncorrelated components. This requires finding A so that Ky = AKyA"
15 a diagonal matrix. In the last part of this section we show how to find such a ma-
trix A.

Example 6.18 Transformation to Uncorrelated Random Vector

Suppose the random vector X, X, and X in Example 6.16 is transformed using the matrix:

0

Sl-

.
I
=SI-Sl-

“5l-

Find the E[Y] and K.



Since my = 0, then E[Y] = Amy = 0. The covariance matrix of Y is:

1
J1o1 o VA 11 0
Ky=AKAT=2[1 -1 0| 1 f1 -1 0
0o o 1| A 0 0 1
0 0 1
1 1 1
I-— 1+— 0 1-— 0 0
Jr 10 V2 V2 V2
==[1 -1 0 1 1 = 1
2 1-——= —|1+—5 0 0 1+—= 0
0 0 1 V2 ( v’i) V2
0 0 1 0 0o 1

The linear transformation has produced a vector of random variables Y = (¥}, ¥5, ¥3) with

components that are uncorrelated.
———



