DTMC

Dr Ahmad Khonsari
ECE Dept.
The University of Tehran



Markov process

A stochastic process is called a Markov process when it has the Markov property:

P{th < Xn th_l = Xn—-1, ""Xt — Xl} — P{th < xn|th_1 — xn_l}, Vn, th <.+ <t

1 n

e The future path of a Markov process, given its current state (th_l) and the past history before
t,,_1, depends only on the current state (not on how this state has been reached).

e The current state contains all the information (summary of the past) that is needed to
characterize the future (stochastic) behavior of the process.

e Given the state of the process at an instant its future and past are conditionally independent.

Example A process with independent increments is always a Markov process.
Xty = Xy + Koy = X))
Y

the increment is independent of all the previous increments
which have given rise to the state X, |



Markov chain

The use of the term Markov chain in the literature is ambiguous: it defines that the process
is either a discrete time or a discrete state process.

In the sequel, we limit the use of the term for the case where the process is both discrete
time and discrete state.

e Without loss of generality we can index the discrete instants of time by integers.
— A Markov chain is thus a process X, n=0,1,....

e Similarly we can denote the states of the system by integers X, =0, 1, . .. (the set of
states can be finite or countably finite).

In the following we additionally assume that the process is time homogeneous.
A Markov process of this kind is characterized by the (one-step) transition probabilities

(transition from state i to state j):

time homogeneity: the transition probability does
Dij = P{X, :]'|Xn_1 =i} not depend on n



The probability of a path

The probability of a path i0,il,...,in is

P{Xo = ig, ., Xn = in}=P{Xo = i0}Di, i, Pi, i, -~ Pi,_pin
Proof

P{X, =iy, X1

i1}= P{X1 =i1]|Xo = io}P{Xo = o}
N

J

.
Pi,,iq

P{Xo =19, X1 =11, X; = I3}= P{Xz =Xy =11, X0 = io}P{X1 = 1;,Xo = lp}

. . S\ v ’
=P{X0 — lO}pio,ilpi1;i2

Pi, i, o — i
Similarly, the proof can be continued for longer sequences. Pigiy P1Xo = Lo}

el g, b
e *I * I *
v v v

Pig,i, Pi,i, Di,,is



Dynamics of a MC: The transition probability matrix of a Markov chain

The transition probabilities can be arranged as transition probability matrix P = (p; )

Initial state
—
Poo Poai DPo2 " .
INa
P=|DP1io0o D11 D12 "
’ . . state

e The row i contains the transition probabilities from state i to other states.
— since the system always goes to some state, the sum of the row probabilities is 1

e A matrix with non-negative elements such that the sum of each row equals 1 is called a
stochastic matrix.

e One can easily show that the product of two stochastic matrices is a stochastic matrix.



Many-step transition probability matrix .
The probability that the system, initially in state i, will / .
in state j after two steps is | ° . * ]

z Di kPk,j ’
K

(takes into account all paths via an intermediate state k).
Clearly this the element {i, j} of the matrix P=.

Similarly, one finds that the n-step transition probability matrix P".

Denote its elements by pl]) (the subscript refers to the number of steps). Since it holds
that

P" =PM-P"M (0<m<n),we can write in component form
pl] = Dk p(m) (n ™) the Chapman-Kolmogorov equation

This simply expresses the law of total probability, where the transition in n steps from state
i to state j is conditioned on the system being in state k after m steps.



State probabilities

Denote

ni(n) = P{X,, =i} the probability that the process is in state i at time n
Arrange the state probabilities at time n in a state probability vector
n(")=(n(()n), n§n), ngn),...)

By the law of total probability we have

P{X, = i}=Xx P{X; = i|Xo = k}P{X, = k}

0
or 10 = 5,1 i,

and in vector form (M = (0P

As the process is Markovian and (1) represents the initial probabilities in the next step,
n® = WP and generally n = g(n-Dp

from which we have recursively

W = w(OP™  (Note, P" is the n-step transition probability matrix.)



Example Dp(1 p)

5 \,Q\ /V\_
1-p p(1-p) p Q//f\_pz
P=[ 1— 1— 2 = 1/3 RO '
p p(A—p) p”| P O oy
0 1-p p LN p?'—*Q —

6 2 1\ /0.6666 02222 0.1111
P1=§<6 2 1>= <O.6666 0.2222 o.1111>

0 6 3 0  0.6666 0.3333

48 22 11\ /05926 02716 0.1358
P2=9i2<48 22 11>= <0.5926 0.2716 0.1358)

36 30 15/ \0.4444 03704 0.1852

p4 1(420 200 103) (0'5761 02526 0'1413> Starting from an initial state i, the distribution

of the final state can be read from the row i.
After 8 steps the final state distribution is
independent of the initial state (to the
accuracy of four digits): “the process forgets
its initial state”.

=—(420 206 103 )=(0.5761 0.2826 0.1413
396 222 111 0.5432 0.3045 0.1523
0.5714 0.2857 0.1429

P (0.5714 0.2857 0.1429)
0.5714 0.3057 0.1429



Classification of states of a Markov chain

State i leads to state j (written i = j), if there is .
a pathi,=i,i,...,i, =jsuch that all the tran- /® ®\® -
sition probabilities are positive, p;, ;, .. > 0, k=

0,..,n-1.  Then (P");;> 0. O ®

States i and | communicate (written i < ), if @ — () — Y\\.G)

i—~>jandj—>i.
Communication is an equivalence relation: the states can be grouped into equivalent
classes

so that:

e within each class all the states communicate with each other
e two states from two different classes never communicate which each other

The equivalence classes defined by the relation <> are called the irreducible classes of
states

A Markov chain with a state space which is an irreducible class (the
only one, i.e. all the states communicate) is called irreducible.



Classification of states (continued)

A set of states is closed, if none of its states leads to any of the states outside the set.

A single state which alone forms a closed set is called an absorbing state

- for an absorbing state we have p;; = 1
- one may reach an absorbing state from other states, but one cannot get out of it

Each state is either transient or recurrent.

e A state i is transient if the probability of returning to the state is < 1.
i.e. there is a non-zero probability that the system never returns to the state.

e A statejis recurrent if the probability of returning to the state is = 1.
i.e. with certainty, the system sometimes returns to the state.

Recurrent states are further classified according to the expectation of the time T it
takes to return to the state:

positive recurrent null recurrent
expectation of first return time < oo expectation of first return time = oo

The first return time T, ; of state i is the time at which the Markov chain first returns to state i when X, = /.



Classification of states (continued)

Type # of visits | E[T} ]
Transient < 00 00
Null recurrent 00 00
Positive recurrent 00 < 00
If the first return time of state i can only be a multiple of an integer d > 1 the
state i is called periodic. Otherwise the state is aperiodic. OO,
. - . . o 7, jaksoon
An aperiodic positive recurrent state is ergodic W positsest
A Markov chain is ergodic, iff all its states are ergodic. 2/
)
'i_ P COD - Q/' ) HK\ jaksollinen
absorboiva translentt T OB ‘G)
f/ \
o) 5

A
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Classification of states (continued)

Proposition: In an irreducible Markov chain either
- all the states are transient, or >
- all the states are null recurrent, or T |-’”fi““\, — | 1-p;
- all the states are positive recurrent

Remarks on the life time of a state and the first return time

The number of steps the system consecutively
stays in state i is geometrically distributed

because the exit from the state occurs with the probability 1 - p; ..

After each visit of state i, the first return time T, back to state i is independent of
the first return times after any of the other visits to the state (follows from the
Markov property).

_ _ ¢'s) if the state is transient or null recurrent
Denote T, = E[T; ] T. = {

< if the state is positive recurrent



Limiting distribution VS stationary distribution

Q: What happens to p;{" as n goes to infinity?
Q: What is the lim P as n->c0?
Q: Does it always converge? (we’ll see this later)

> If limit exists, then lim p/%

ij =T for any initial state i
n—oo

»1 = {n,, n,,.., .} is called the stationary distribution
IFte P=mt 2 7, = X7, - p;;
and 2. =1

»The above equation can be used to find it



Kolmogorov’s theorem
In an irreducible, aperiodic Markov chain there always exist the limits
m) _ 1

nj=lim TT.
n—ooo J T

and these are independent of the initial state.
Furthermore, either

i) all the states of the chain are transient or all of the states are null recurrent; in either
case T = 0, Vvj,

ii) all the states of the chain are positive recurrent, and there exists a unique stationary
distribution it which is obtained as the solution of the equations

n=r-P or T[j = Ziﬂipi,j and ZJTL'] =1

(e is a row vector with all the components equal to 1, and
e' is the corresponding column vector)



Remarks on the stationary distribution

If the limit probabilities (the components of the vector) i exist, they must satisfy the
equation it = P, because

n= lim ™ = lim ®™*Y = lim t™.P = n.P

n—-0o n—-0o n—0o

The equation t = P can also be expressed in the form: m is the (left) eigenvector of the
matrix P belonging to the eigenvalue 1 (or belonging to the eigenvalue 0 of the matrix

(P-1)).

r;j defines which proportion of time (steps) the system stays in state j.

In an irreducible, aperiodic Markov, the limit distribution mt (aka steady state probabilities)
is equal to the so called the stationary distribution or the equilibrium distribution

Note. An equilibrium does not mean that nothing happens in the system, but merely that
the information on the initial state of the system has been “forgot” or “washed out”
because of the stochastic development.



Global balance
Equationt=mP or it; = Y ; P; j Vj, is often called the (global) balance condition.

Since for row j; ).; Pi;=1 (the transition takes the system to some state), one can write
Zi 7ijj,i = Zi ﬂipi,j One equation for each state j.

prob. that the system is in Balance of probability flows: there

state j and makes a transi- prob. that the system is in are as many exits form state j as
tion to another state another state and makes a there are entries to it.
transition to state j
2 >
NI T — N

If the balance equations are known to be satisfied for all but one of the states, they are
automatically satisfied also for that particular state (due to conservation of probability flows)

— the balance equations are linearly dependent
(= the homogeneous equation it = mP has a non-zero solution)

— the solution is determined up to a constant factor
—in order to determine the unknown factor, one needs the normalization condition Zj mj =1



Example. We revisit the previous example (now with a general p).

1-p p(1-p) p°
(Mg m,,)=(ny Iy th) 1-p p(1-—p) Pz
0 1—0p p

Write the first two equations (equalities of the first two components of the vectors on the
lhs and rhs)

ny = (1-p)ng+(1-p)m, = no_Tpnl prig=(1 — p)my

m, = p(1-p)rg +p(1-p)m; +(1-p)m, = (1-p)?m, +p(1-p)m; +(1-p)m,

= (1-p)m, +(1-p)m,
:}’T[l:l%p“z = T[o( —)2m,

= (D2 =P 1)nz

By the normalization condition m, + 1, + 1, = 1 one gets

_ , (1-p)? p(1-p) p? . 1
- == =(0.571 2 142
(1—19(19—1) 1-p(p-1) 1—p(p—1))W|th p=35: N (0.5714 0.2857 0.1429)



15.3

Classification of States

All states

Recurrent Transient

Null Positive
| |

Periodic ~ Aperiodic ~ Periodic ~ Aperiodic

I
Ergodic



Calculation of Stationary Distribution

A. Finite number of states B. Infinite number of states
= Solve explicitly the system of = Cannot apply previous methods
equations to problem of infinite dimension
- =iﬂ._P F=01,....m = Guess a solution to recurrence:
J I U.ﬁ AT R o
wo =) mP, j=01..
Zn‘i =1 o
i=0 Z TE}. =J.
= Numerically from P"which i=0

converges to a matrix with
rows equal to

=» Suitable for a small number of
states

See appendix
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Solving Stationary Equations in Infinite-State
DTMCs

* Consider an unbounded queue that at every time step, with
probability p = 1/40 one job arrives, and independently, with
probability g = 1/30 one job departs.

* what is the average number of jobs in the system?

 we model the problem as a DTMC with an infinite number of states:
0,1,2, ..., representing the number of jobs at the router.

 Letr=p(1-g)=29/1200 and s =qg(1 - p) =39/1200, where r<s.
r=one enters, no exit, s= one exits, no enter



Solving Stationary Equations in Infinite-State
DTMCs

* the DTMC for the unbounded Queue and the transition probability
matirx

|=r—s |=r—s l—r—s
Y Y Y
W Ny NS
| —~ 0 , Tu - P ; S T
-1
~ %/ _ Y Y
§ s §
[1—1 : 0 0 \
S 1—7r—s=s I ()
P — 0 s l—7r—s 7
0 0 s l—r—=s

21



Solving Stationary Equations in Infinite-State

DTMCs

e the stationary equations:

mg = mo(l — 1) + m S

m =mr +m(l — 17— )+ ms
o = MT + ma(l — 7 — 8) + m38
Mg = Mol + M3(l — 17 — 8) + My 8

T +m +me+m+---=1

22



Solving Stationary Equations in Infinite-State
DTMCs

* Q: How we solve this infinite number of equations?

* the first equation can be rewritten as
r

T[l — _7T0
S

* And T, in terms of T,

* And make a general guess



Solving Stationary Equations in Infinite-State DTMCs

* To verify your guess, you need to showthat it satisfies the stationary

equations m; =mi T+ m(l— 1 —8) 4+ mis

_ i1 _— i+ 1
(—) Mg = (—) ToT + (—) mo(l —7 — 8) + (—) Tos
S 5 s s

 Using normalization equation );; m;

I 7 2 7y 3

24



Solving Stationary Equations in Infinite-State
DTMCs

* Q: What is the average number of jobs at the server?

* A: Let N denote the number of jobs at the server. Then
* E[n]=0. my+1. t;+2. 1, +...

e Define

* Then t;=p!(1-p)



Solving Stationary Equations in Infinite-State

DTMCs

* Thus

E[N]=1p(1 —p) +2p°(1 — p) +3p°(1 —p) + ...

=(1—pp(1+2p+3p" +4p° +...)
d 2 3 1
=1 =peg (Ltpt+p’+p +p' +..)

d
— (- (lfp)

1
(I—p)

=(1—p)p-

* For our example p = 29/39 and E[N] = 2.9. So on average there are about 3 jobs in the

system.

26
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